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Introduction 

Gut microbiota creates a profound connection with the host, taking part in numerous 

essential aspects of its physiology (Naya-Català et al., 2022). Moreover, microbial 

populations build a mazy network of interconnections between species, characterized by 

cooperation or competition that can affect the whole microbiome (Yajima et al., 2023). It 

is well documented that several factors can affect the microbial composition, but the 

interpretation of the probabilistic factors that underlie these interactions are still 

unrevealed. Indeed, the current approaches in fish microbiota research are mainly focused 

on the comparison of bacterial abundances between experimental groups or meta-analyses 

matching different studies. In this context, to make a step forward in the understanding of 

the fish microbiome dynamics, we implemented SAMBA (Structure-Learning of 

Aquaculture Microbiomes using a Bayesian Approach), an open-source, web-based 

platform with a graphical user interface implemented with Shiny (Soriano et al., 2022). 

This tool uses probabilistic Bayesian Networks (BN) to evaluate the conditional 

dependencies within a set of experimental variables and taxa. The aim of this study is to 

show how the implementation of SAMBA works as a model of causal predictions in the 

gut microbiota of aquaculture species. 

 

Materials and methods 

Experimental data for training SAMBA were taken from Spanish national (ThinkInAzul) 

and H2020 EU projects (AquaIMPACT, AQUAEXCEL2020, AQUAEXCEL3.0, and 

EATFISH). The experiments were carried out on gilthead sea bream (Sparus aurata) 

under specific experimental conditions such as changes in genetic background, diet 

composition, or feed additives supplementation, among others. To define how and which 

biotic and abiotic factors modulate the fish microbiota, and which causal relationships 

exist within microbial taxa, we set different goals in line with the potential of SAMBA. In 

a first approach, we combined the taxa abundances within one specific experiment with 

BN, identifying the positive and negative relationships among the most representative 

bacteria. In a second approach, we filtered, from the data of already published 

experiments, those taxa present in both trials that took part of the core microbiota in at 

least one experiment. The counts of the remaining taxa were introduced in SAMBA, and 

we built two separated models, aiming to detect common microbes’ causal relationships 

occurring in multiple experiences.  

 

Results and discussion 

Both the intra-experiment and the inter-experiment approaches allowed us to obtain the 

hierarchical disposition of the experimental variables and the taxa within the data 

populations (Figure 1). Therefore, SAMBA tool can constitute a real step forward 

microbiomic studies, as it can take advantages from the taxa abundances to deeper 

understand the role and influence of each OTUs in the gut of livestock species. The 

directed acyclic graph (DAG) created in the intra-experiment approach (Figure 1a) 

disclosed the taxa primarily influenced by the experimental variables and the effect of 

these over other members of the microbial population. Interestingly, our results showed 
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that the taxa affecting other taxa (i.e., parent taxa) are not always the most abundant, which 

are the ones usually reported in current 16S analyses. Regarding the inter-experiment 

approach, we obtained a total of 13 relationships present in both models (Figure 1b). From 

these results, it is feasible to draw a common structure, identifying which interconnections, 

shared by the two different experiments, and belonging to the core microbiota taxa, remain 

unaltered or are strictly linked with the variables that characterize the experiments. In 

addition, with the SAMBA implementation of the pipeline to infer metagenomes using 

PICRUSt2 (available with Metacyc and KEGG protocols), it is also possible to correlate 

the functional metabolic profiles of those taxa to better define their role in the specific 

relationships and in the total framework of the core microbiota (data not shown). 

Figure 1. a Graphical representation of the relationships of the most abundant OTUs within the 

experiments (blue arrows= directional relationships from the OTUs, orange arrows= directional 

relationships to the OTUs, red diamonds=Experimental variables). b Graphical representation of the 

common relationships, shared between two different experiments (blue arrows=shared relationships, 

red diamonds=Experimental variables, dots=OTUs). 
 

Concluding remarks 

The implementation of SAMBA arises as an innovative approach, not yet exploited for 

aquaculture data (Ruiz-Pérez et al., 2021), to offer researchers relevant information 

beyond taxa abundances comparison when working with 16S metagenomics datasets. 

Although the tool is still being trained, when a sufficient amount of shared variables (i.e. 

mutual taxa, core microbiota) will be available, SAMBA will predict matching 

information of several experiments, discerning common associations between them that 

can be related with the experimental variables. In fact, future experimental designs are 

expected to be adapted to feed SAMBA. Moreover, as this tool is a constantly evolving 

project, SAMBA will soon include the integration of machine learning algorithms and 

new interfaces for different omics data, to be able to process complex and integrated 

results in an easy-to-use package. 
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