

# Innovative biomarkers for environmental and nutritional stressors in sea bream



Ariadna Sitjà-Bobadilla & Jaume Pérez-Sánchez

### **AQUAEXCEL INDUSTRY WORKSHOP:**

Research Infrastructures: adding value to European aquaculture industry

Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Spain (AQUAEXCEL partner 4. WP7)



Aquaculture Europe 2014 - San Sebastián 17 October 2014



# **AQUACULTURE STRESSORS**



AE 2014, San Sebastián



# OBJECTIVES

- To better identify stress effects: there is not a consensus endocrine profile for chronically stressed animals or how to asses it without invoking further stress
- To compare classical measures with molecular and proteomic approaches
- To use non-lethal samples: mucus
- To find alternative biomarkers

#### Molecular approach: the mitochondria why



Mitochondria main cellular function is ATP production

Number & activity of mitochondria reflect cell energy requirements

Mitochondria are highly regulated at transcriptional and transductional level



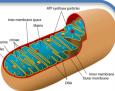


# BACKGROUND

#### Fish and Chips

#### Fish and Chips :

Fish and Chips database gathers public transcriptome data related to fish species in various physiological conditions




http://fishandchips.genouest.org

#### 

Gathers all public transcriptome data related to fish species in various physiological conditions (> 350 microarrays)

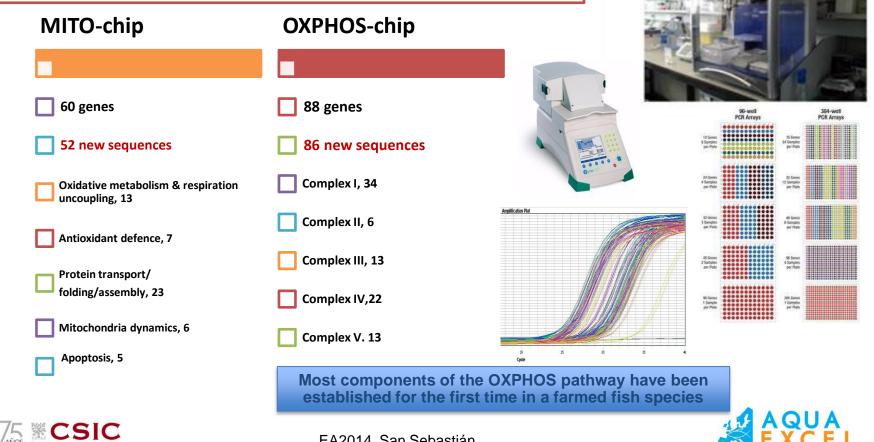




| List of TenentsManas                                 |
|------------------------------------------------------|
| Matrix BLOSUMBD .                                    |
| Matric: BLOSUM80 •                                   |
| Matric: BLOSUM80 •                                   |
|                                                      |
|                                                      |
| nments: 50                                           |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
| <u>al</u> words<br><u>any</u> of these words         |
|                                                      |
|                                                      |
| aining words:                                        |
| Ocontaining all words Ocontaining any of these words |
|                                                      |

CSIC

Nutrigenomics and Fish Growth Endo


- Extensive BLAST searches <u>www.nutrigroup.iats.org/seabreamdb</u>
- Nucleotide sequence analysis & manual curation
- 926 mitochondrial-related genes are represented in the Nutrigroup transcriptome database



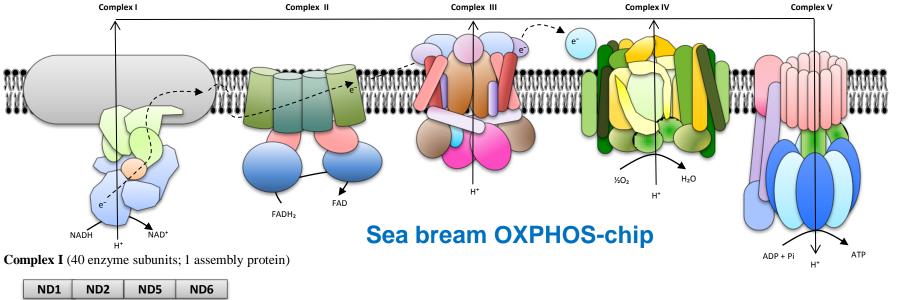

# **TRANSCRIPTOMIC TOO**

Figure 1. Automated liquid handling robot

Two pathway-focused arrays for mitochondrial gene expression profiling to assess the health and metabolic condition of fish exposed to environmental and/or nutritional stressors www.nutrigroup-iats.org



EA2014, San Sebastián



|    |      |        |        | <b>_</b> |          |          |         |           |        |          |         |         |         |         |
|----|------|--------|--------|----------|----------|----------|---------|-----------|--------|----------|---------|---------|---------|---------|
| ND | UFA1 | NDUFA2 | NDUFA3 | NDUFA4   | NDUFA4-l | .2 NDUFA | 5 NDUFA | .6 NDUFA7 | NDUFA8 | 3 NDUFA9 | NDUFA10 | NDUFA11 | NDUFA12 | NDUFA13 |
| ND | UFB1 | NDUFB2 | NDUFB3 | NDUFB4   | NDUFB5   | NDUFB6   | NDUFB7  | NDUFB8    | NDUFB9 | NDUFB10  | NDUFB11 | NDUFC1  | NDUFC2  |         |
| ND | UFS2 | NDUFS3 | NDUFS4 | NDUFS5   | NDUFS6   | NDUFS7   | NDUFV1  | NDUFV2    | NDUFV3 |          |         |         |         |         |

NDUFAF2

ATPAF2

**Complex III** (12 enzyme subunits; 1 assembly protein)

**Complex II** (4 enzyme subunits; 2 assembly proteins)

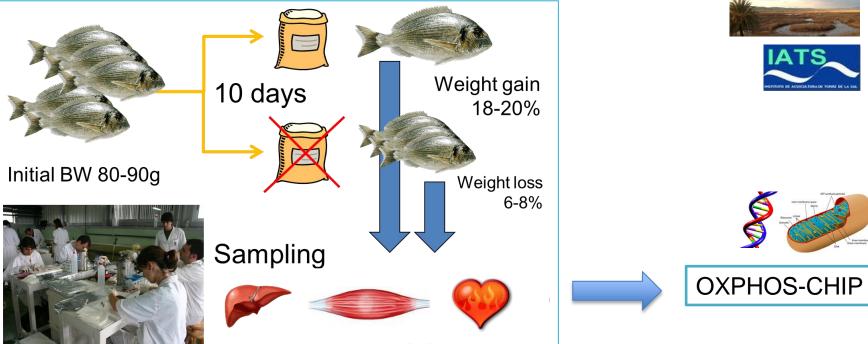
|  | SDHA SDHB SDHC |        |      | 51   | CYB |      |         |        |        |       |       |       |        |          |          |
|--|----------------|--------|------|------|-----|------|---------|--------|--------|-------|-------|-------|--------|----------|----------|
|  |                |        | SDHC | SDHD |     | CYC1 | UQCRFS1 | UQCRC1 | UQCRC2 | UQCRH | UQCRB | UQCRQ | UQCR10 | UQCR11-A | UQCR11-B |
|  | SDHAF          | 1 SDH. | AF2  |      |     | CYC  |         |        |        |       |       |       |        |          |          |
|  |                |        |      |      |     | UQCC |         |        |        |       |       |       |        |          |          |

Complex IV (20 enzyme subunits; 3 assembly proteins)

| COXI                                              | COXII CO |        |        |        |        |        |        |         |         |       |        |        |
|---------------------------------------------------|----------|--------|--------|--------|--------|--------|--------|---------|---------|-------|--------|--------|
| COX4a                                             | COX4b    | COX5a1 | COX5a2 | COX5b1 | COX5b2 | COX6a1 | COX6a2 | COX6b1a | COX6b1b | COX6c | COX7a1 | COX7a2 |
| COX7b                                             | COX7c    | COX8a  | COX8b  |        |        |        |        |         |         |       |        |        |
| COX15                                             | SURF1    | SCO1   |        |        |        |        |        |         |         |       |        |        |
| Complex V (15enzyme subunits; 1 assembly protein) |          |        |        |        |        |        |        |         |         |       |        |        |
| ATP6 ATP8                                         |          |        |        |        |        |        |        |         |         |       |        |        |
| ATP5A1                                            | ATP5B    | ATP5C1 | ATP5D  | ATP5E  | ATP5F1 | ATP5G1 | ATP5H  | ATP5I   | ATP5J2  | ATP5L | ATP50  | OSCP1  |

### **Experimental approach-1: Nutritional Stressor**

**Experimental design** "Fasting model"















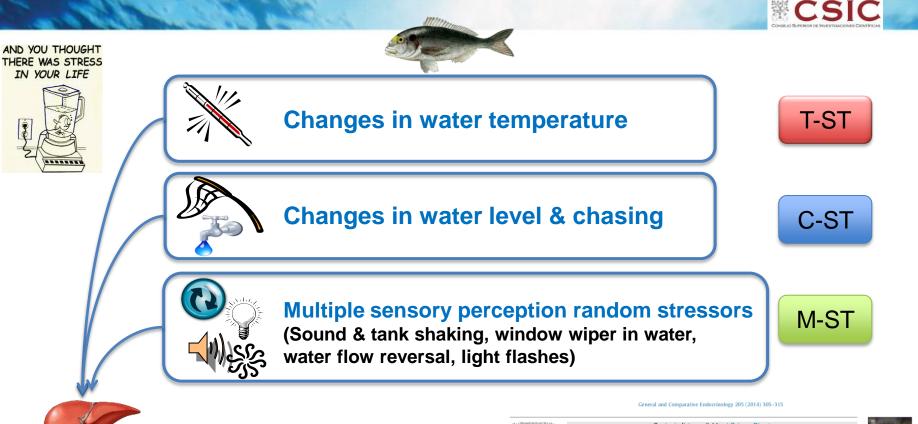

AE2014, San Sebastián



#### Nutritional stressor: OXPHOS regulation by fasting "malnutrition/caloric restriction"

| Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |                                 | <b>~</b>                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|
| Differentially<br>expressed genes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72                                                                                         | 29                              | 10                             |
| Type of regulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\bowtie$                                                                                  |                                 | A                              |
| Genes involved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Catalytic, regulatory<br>and assembly<br>factors                                           | Regulatory and assembly factors | Catalytic and assembly factors |
| Gene type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mtDNA/nDNA                                                                                 | nDNA                            | mtDNA/nDNA                     |
| Exposed of the second s | Strong down-regulation of<br>energy–generating processes<br>with inhibition of lipogenesis |                                 | the reduction                  |

**OXPHOS** regulation is driven in a tissue-specific manner


by mitochondrial- and nuclear-encoded genes



AE2014, San Sebastián



### Experimental approach-2: Chronic environmental stress







Metabolic and transcriptional responses of gilthead sea bream (*Sparus aurata* L.) to environmental stress: New insights in fish mitochondrial phenotyping



Azucena Bermejo-Nogales<sup>a</sup>, Marit Nederlof<sup>b</sup>, Laura Benedito-Palos<sup>a</sup>, Gabriel F. Ballester-Lozano<sup>a</sup>, Ole Folkedal<sup>c</sup>, Rolf Eric Olsen<sup>c</sup>, Ariadna Sitjà-Bobadilla<sup>d</sup>, Jaume Pérez-Sánchez<sup>a,\*</sup>

\*Nutrigenomics and Fish Growth Endocrinology Group, Department of Marine Species Biology, Culture and Pathology, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain

<sup>b</sup> Aquaculture and Fisheries Group, Wageningen University, De Elst, 6708 WD Wageningen, The Netherlands <sup>c</sup> Institute of Marine Research Matre, 5984 Matredal, Norway

Institute of Munice Assession Munice, 3554 Municeau, NorWay & Fish Pathology Croup, Department of Marine Species Biology, Culture and Pathology, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain





**MITO-chip** 



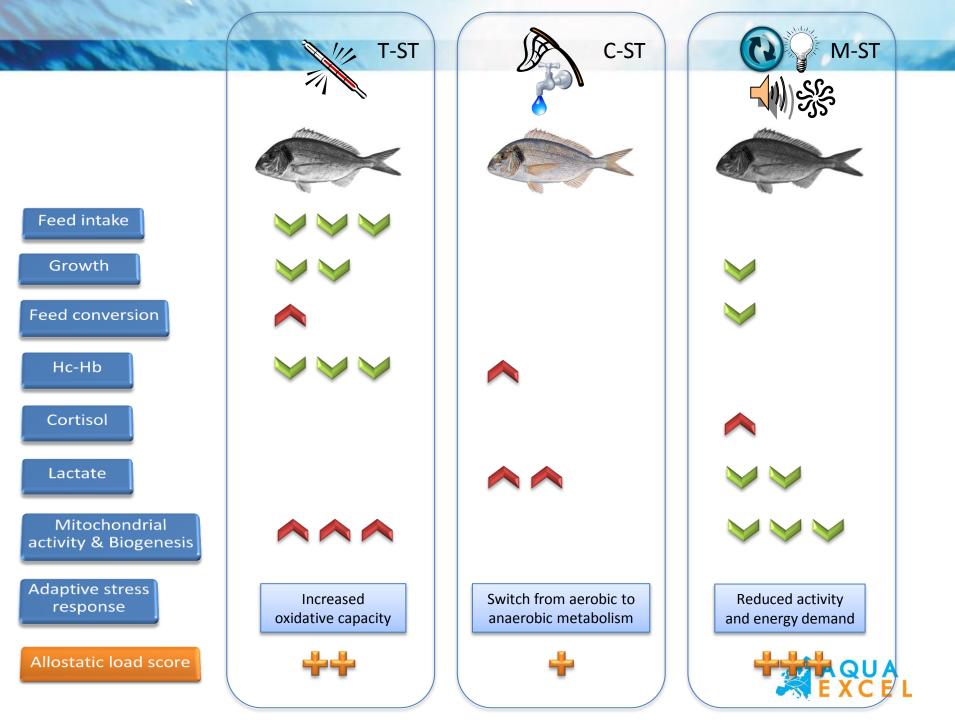


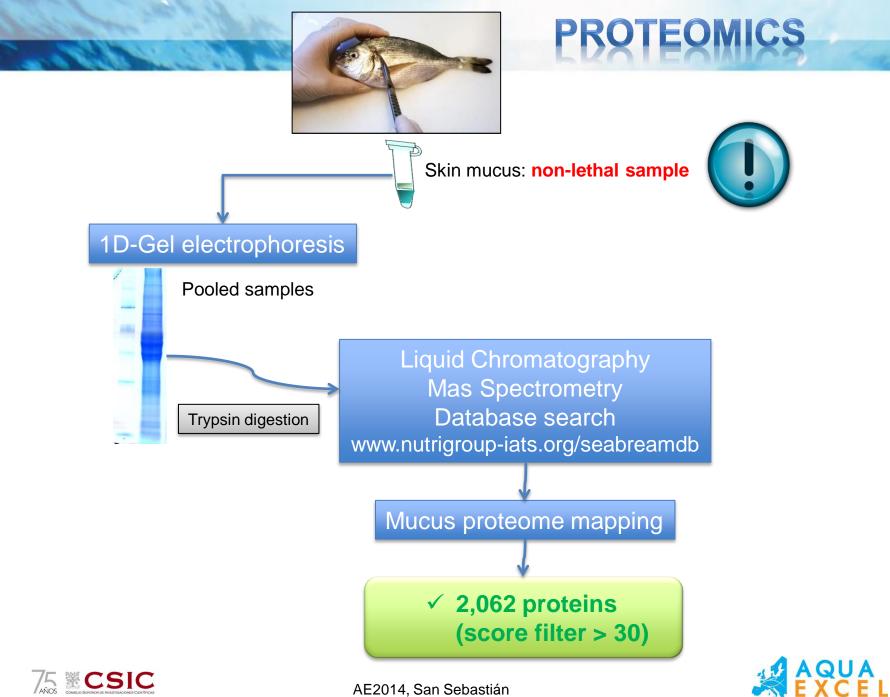




|                                                |         |       |      | -422- |   |
|------------------------------------------------|---------|-------|------|-------|---|
| Nuclear                                        | Γ PGC1α | 5.98* | 1.24 | 0.43* | - |
| transcription factors                          | - NRF1  | 2.32* | 0.88 | 0.71* |   |
|                                                | NRF2    | 1.8   | 0.86 | 0.72  | 1 |
|                                                |         |       |      |       |   |
| Oxidative                                      | CPT1A   | 4*    | 0.91 | 0.52* |   |
| metabolism markers                             | ACAA2   | 0.97  | 0.8  | 0.66* |   |
|                                                | CS      | 1.81* | 0.9  | 0.64* |   |
| Outer membrane                                 | Tom70   | 1.61* | 0.95 | 0.97  |   |
| translocation                                  | Tom34   | 1.44* | 1.03 | 0.84  |   |
| I                                              | Tom22   | 2.11* | 1.29 | 1.43  |   |
| Inner membrane translocases<br>(TIM23 complex) | Tim44   | 1.45* | 1.13 | 0.89  |   |
| (TIM25 complex)                                | Tim23   | 1.38* | 1.27 | 1     |   |
| Inner membrane translocases                    | L Tim8A | 1.04  | 0.86 | 0.73* |   |
| (TIM22 complex)                                | Tim10   | 1.72* | 0.93 | 0.96  |   |
|                                                | Tim9    | 1.61* | 0.96 | 0.83  |   |
|                                                | mtHsp10 | 1.85* | 1.19 | 0.8   |   |
| Molecular chaperones                           | mtHsp60 | 1.97* | 0.86 | 0.79  |   |
|                                                | mtHsp70 | 1.41* | 0.98 | 0.87  |   |
|                                                | L DER-1 | 1.35* | 1.13 | 0.88  |   |
| Antioxidant enzyme                             | GR      | 1.22* | 0.97 | 1.01  |   |
|                                                | FIS1    | 1.32* | 1    | 0.91  |   |
| Fusion &                                       | MFN2    | 1.42* | 0.87 | 0.69* |   |
| Fission markers                                | MIFFB   | 0.92  | 0.7* | 0.73  |   |
|                                                | – MIRO2 | 1.03  | 1.08 | 0.83* |   |
| Apoptotic                                      | AIFM1   | 1.24* | 0.87 | 1.15  |   |
| markers                                        | BAX     | 1.14  | 0.84 | 0.62* |   |
|                                                | – BCLX  | 1.1   | 0.83 | 0.68* |   |
|                                                |         |       |      |       |   |

The hepatic transcriptome reflects the type and intensity of stressor disturbance:


> •T-ST: adaptive response to cope with the temperature decreased and low basal metabolism

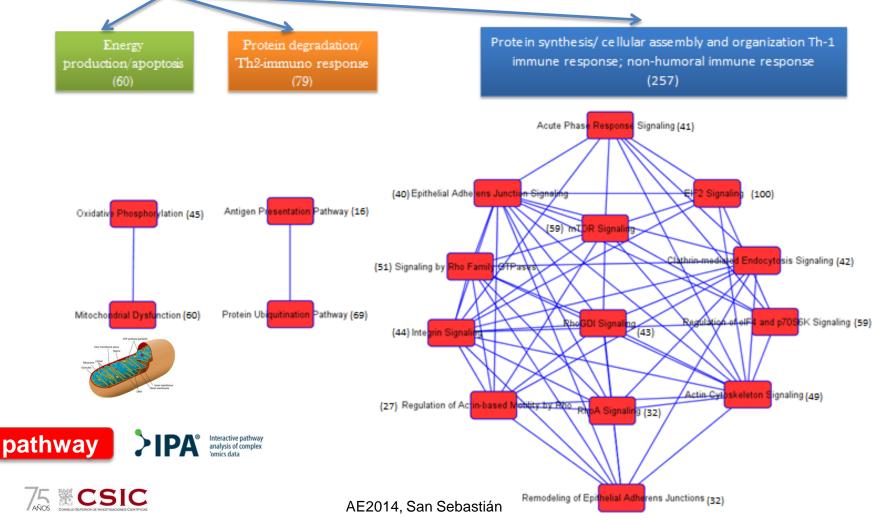

•C-ST: No response: fish habituation to stressful condition

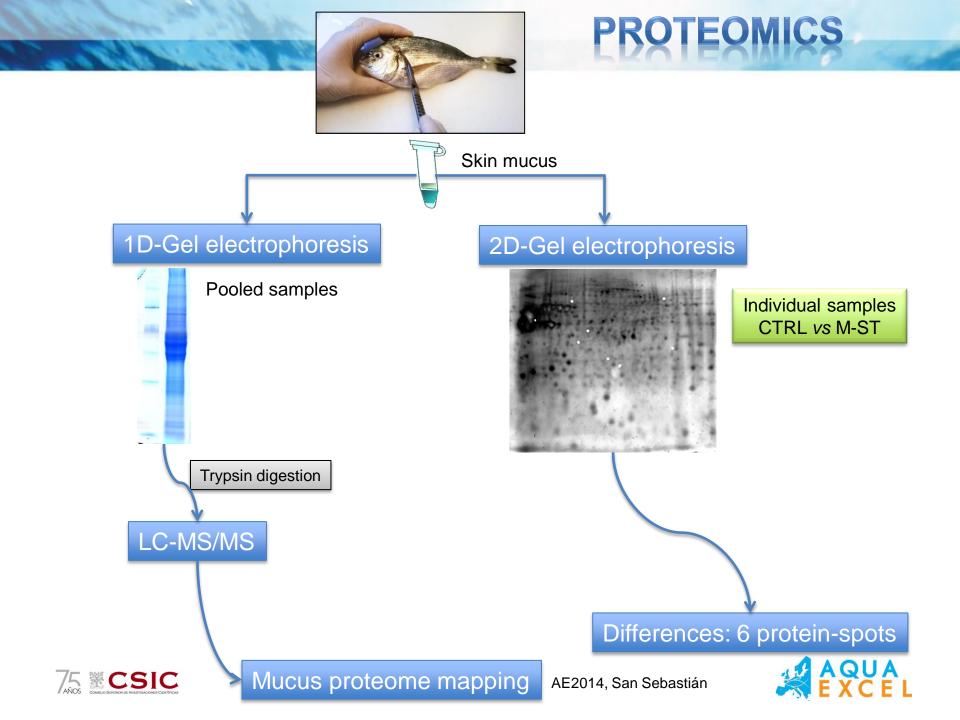
•M-ST: "low power mitochondria": low ROS production, adaptive response to an enhanced risk of oxidative

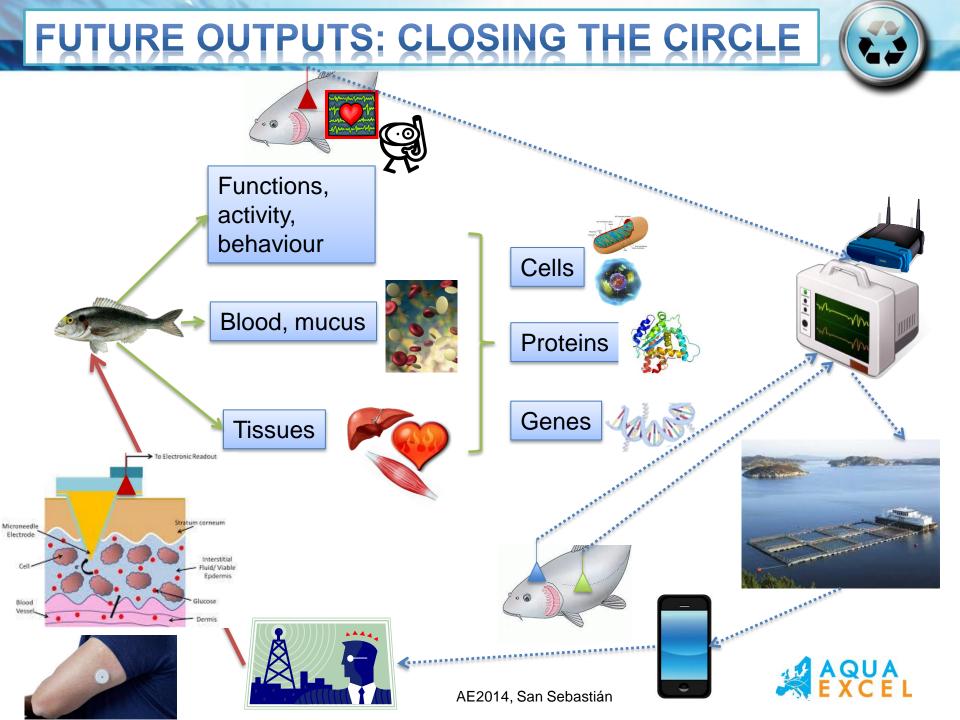


stress







AE2014, San Sebastián


# SKIN PROTEOME MUCUS MAPPING

Pathway analysis of proteins with IPA software (www.ingenuity.com)

- ✓ 1,848 eligible proteins (89.6 %)
- ✓ 418 IPA pathways (out of 644) Initially represented
- ✓ 17 relevant pathways after filtering for  $\geq$  3 common proteins among related pathways
- ✓ 3 distinct nodes







CONCLUSIONS-TAKE INDUSTRY MESSAGES

✓ New genomic and proteomic resources contribute to identify highly informative biomarkers of clinical use in farmed fish

- We can correlate now the mitochondrial markers with classical measurements and to develop new methods for non-invasive and remote detection
- ✓ We will be able to scrap a fish and to know if it has suffered too much after transport, size sorting or vaccination



 We will be able to monitor remotely if fish are coping well with the culture conditions





We will be able to monitor fish
without disturbing them
AE2014, San Sebastián

# WHO BENEFITS FROM OUR RESULTS?

End-user: aquaculture industry, scientific community
Application: aquaculture, marine sciences, climate change, environmental management

- ✓Impact:
  - ✓ Best monitoring of fish health and welfare
  - ✓ Provide new insights for unraveling chronic stress in routine aquaculture management
  - ✓Help to select for stress resistance fish in broostock selection programs



### Contact us

### Thank you for your attention

ariadna.sitja@csic.es jaime.perez.sanchez@csic.es

www.aquaexcel.eu www.nutrigroup-iats.org www.tinyurl.com/pathology-iats

Tel: +34-964319500



### Adding Value

Donostia-San Sebastián, Spain October 14-17, 2014 www.easonline.org





### DISCLAIMER



The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 262336. This publication reflects the views only of the author, and the European Union cannot be held responsible for any use which may be made of the information contained therein.

